Calculating Capacity At Composting Sites

Land area required for support functions are in the range of 30 to 80 percent, depending on such factors as composting technology, air emission and leachate control, traffic and safety, buffer and product storage.



George Savage



THE addition of new composting facilities or expansion of capacity at existing ones is becoming more and more difficult as feasible sites are taken out of circulation. This has created interest in maximizing the unit production of compost at composting sites so that they perform as efficiently as possible. The need is especially acute if physical expansion is not possible, but increases in production are desired.

Calculating composting capacity involves much more than just analyzing the capacities and physical areas needed for active composting (e.g., aerated static piles or turned windrows) and curing piles and grinding/screening. Some of the more important ancillary and infrastructure requirements include: Buffer area to serve the purposes of noise and air emission abatement, and of visual screening; Weigh-scale and accommodation of the delivery vehicle queue; Fire lanes; Traffic control and monitoring/ contamination identification; Stockpiles to accommodate seasonal market demand for compost product; Air emission and odor control system (e.g., biofilter); Utilities; Leachate containment and treatment.

Business decisions that affect the capacity and area required for the facility primarily include the inventory volume that must be allocated to accommodate the seasonal demand for compost, and the acceptable level of odor and/or air emissions. Those levels may be defined by state and/or federal regulatory limits or, in their absence, by the facility operator based on best management practices and/or on good neighbor policy. Lower levels of air emissions may require more complex emission control systems.

Receiving raw materials and stockpiling of intermediate processed organics can occupy considerable percentages of the total facility land area. Traffic patterns and monitoring must be well planned so that the public health and safety (and delivery vehicles) are protected and flow of raw materials to downstream processing is not impeded.

Of the conventional composting technologies, turned windrows require a larger footprint than aerated static piles (ASPs) due to aisles between the windrows. While ASPs use physical space more efficiently, for the process to be operationally efficient, the material being composted must be able to be biologically degraded to a satisfactory degree without physical mixing.



QUICK CALCULATIONS

A simple method of estimating the required total area of a turned windrow without the inclusion of aisles is to first estimate the unit volume for the cross section of the windrow (in cubic feet or yards) per foot of length of windrow. This can be calculated using the cross-sectional area of the pile (e.g., trapezoid) and assuming a unit pile length of one foot. (In this simple method, the effect of loss of mass from the piles is ignored as a first order estimation.) Next, divide the facility‘‘s volumetric production (equal to the daily capacity times the design residence time in the piles [in days]) by the unit volume per foot. The result is an approximation of the total length of the resulting windrow.

This calculated total windrow length is then divided into shorter lengths to fit within the site boundaries and operating schedule, thus yielding the number of rows and corresponding aisles. For example, for a 100 ton per day turned windrow active composting operation with 15-foot wide windrows, 15-foot fire lanes, 30-day composting period, and unit windrow volume of 3 cy/t, a pad area of approximately 2 acres is required.

The necessary capacities of processing equipment (e.g., grinders, screens) must be estimated based on the design throughput, the characteristics of the materials to be composted, and any anticipated da

Ano da Publicação: 2008
Fonte: BioCycle March 2008, Vol. 49, No. 3, p. 38
Autor: Rodrigo Imbelloni
Email do Autor: rodrigo@web-resol.org

Check Also

Isopor, é possível reciclar

BY RICARDO RICCHINIIN RECICLAGEM DE ISOPOR — 14 JAN, 2015 Maioria dos brasileiros não sabe …

Generic selectors
Pesquisar o termo exato
Procurar em títulos
Procurar nos conteúdos
Filtrar por categorias:
Bioreatores
Vazadouros
Resíduo Proveniente da Serragem de Rochas Graníticas
Centrais de Reciclagem
Resíduos de Madeira
Reciclagem de vidro
Reciclagem de Isopor
Resíduos Gasosos
Aproveitamento energético do biogás
Estações de Transferência/Waste Transfer Stations
Privatization of Public Services
Accidents in the waste industry
Leachate treatment
Thermal Treatment
Gestão de limpeza urbana
Entulhos de Obras de Construção Civil
Biovidros
Resíduos Sólidos de Construção e Demolição
Cimento amianto
Aterros industriais
Resíduos Agrícolas
Combustíveis
Geomembranas
Hospital Waste
Environmental Remediation
Waste sorting plant
Packaging
Plásticos no lixo urbano; caracterização
Gerenciamento de Resíduos
Resíduos de Gesso
Biotecnologia
Gestão de Resíduos de Produtos Eletro-eletrônicos
Licenciamento Ambiental
Reciclagem - Estudos de Caso
Resíduos Espaciais
Zero Waste
Indicadores da Limpeza Urbana
Solid Waste in the United States
Acondicionamento
Waste to Fuel
Patrocinadores
recuperação e reciclagem
Meio Ambiente
Biodigestão
Reciclagem de Lâmpadas
Metais
Emissões Gasosas
Reciclagem de cobre
Resíduos de Dragagem
Sustentabilidade
Pavimentação
Recycling Technologies
Aviation
Food waste
Solid Waste Management
Ação Civil Pública
Resíduos de Saúde
O estado de consumo
Embalagens de agrotóxicos
Recuperação de áreas degradadas
Estória
Qualidade Ambiental (Environmental Quality)
Gases Efeito Estufa
Aproveitamento energético dos RSU através de tratamento térmico
Polymeric Composite Materials
Green house gases
Wood waste
Ciclo de vida dos produtos
e-waste
Análise de Custo de Resíduos Sólidos
Energia
Composição dos Resíduos
Gravimetria
Co-processamento
Poluição ambiental
Veículos em fim de vida
Financiamento
Biodegradable Materials
Greenhouse gas emissions
Marine debris
Últimas Notícias
Aluminum Recycling
Mudanças Climáticas
Reciclagem de Embalagem Tetra Pak
Carvão feito de lixo
Chorume - Gera��o
Reciclagem de CD's
Waste-to-energy
Poluição Atmosférica
Medicamentos
Consórcios
Gasification
Mechanical Biological Treatment - MBT
Public participation
Latest News
Greenhouse gases
Resíduos de Serviços de Saúde
Agenda 21
Plano de Gerenciamento de Resíduos
Coco
Saúde
Reciclagem de óleo
Biocombustíveis
Waste Treatment
Organic Waste
Reciclagem de Carpetes
Solar Energy at Landfill Sites
Reverse Process
Las Últimas
Bioreactor
Reciclagem de entulho e restos de obras
Geração de Resíduos
Biodegradabilidade
Gari
Reciclagem de alumínio
Sistemas de Informações Geográficas - SIG
Resíduos Plásticos
Casca de coco
waste collection
Perigos do Lixo
Informal Sector
open dump
Cartilhas
Compostagem
Cestas Coletoras (papeleiras)
Biodiesel
Resíduos da Construção Civil
Metais Pesados
Life Cycle
Pirólise
Legislação
Planos de Gestão de Resíduos
Panorama dos Resíduos Sólidos no Brasil
Hazardous Wastes
Waste Management Indicators
Textile recycling
Curiosidades
Composto Orgânico
Saneamento básico
Redução e Reciclagem de lixo
Licitações Públicas
Reciclagem de Madeira
Biometano
Madeira Plástica
Reciclagem de CD’s
Resíduos Agrossilvopastoris
Corona
Leachate
Landfill
Construction and demolition waste
Eventos
Pesquisa Nacional sobre Saneamento Básico
Pneus
Vidro
Preços de Materiais Recicláveis
Histórias
Estudos de caso
Mecanismo de Desenvolvimento Limpo - MDL
Manuais
Planos Municipais de Gestão Integrada de Resíduos
Indicadores ambientais
Anaerobic Digestion
Renewable Energy
China
Links
Embalagens
Limpeza Urbana
Como Fazer...
Biomassa
Baling
Catadores de lixo
Reciclagem de lodo
Reflorestamento
Reciclagem de Veículos
COVID 19
Liner
Food Recovery
Biomethanization
Biodegradable Municipal Waste
Economia
Responsabilidade Social Corporativa
Inventário de Resíduos Sólidos
Impactos do Lixo
Tratamento e Biorremediação
Gestão Empresarial e Pública
Sacolas plásticas
Landfill Gas to Energy
Resíduos Orgânicos
Valorização Energética
Landfill recovery and restoration
Waste Characterization
Biodegradable plastic
Recycling
Reciclagem de Produtos Eletro-eletrônicos
Lixo no Mar
Estatísticas
Educação Ambiental
Políticas Públicas - Aterros Sanitários
Metano
Necrochorume
Lixo Espacial
Reciclagem Têxtil
Marco Legal do Saneamento Básico
Fuel Cells
Circular Economy
Obsolecência planejada
Waste Minimization
PNSB - Pesquisa Nacional de Saneamento Básico
Chorume - Geração
Desenvolvimento Sustentável
Seleção de Áreas para Destino Final de Resíduos
Políticas Públicas
Efeito Estufa
Simbologias de Materiais Recicláveis
Reciclagem de aço
Resíduos de Transporte
PLANARES - Plano Nacional de Resíduos Sólidos
Climate Change
Tranfer Station
Deck Lights
Sanitary Landfill
Recuperação Energética dos Resíduos Sólidos Urbanos
Licitações
Galeria de Fotos
Curiosidades
Especificações Técnicas
Vídeos
Trabalhos Técnicos
Bibliografia

More results...